
Securing Monero Transactions using Tandem

Linus Gasser1, Christian Grigis1, and Wouter Lueks1

1EPFL, Lausanne, CH

September 2022

Abstract

When using cryptocurrencies, one of the main problems consists of handling the private key.

An attacker should not be able to create private transactions.

One could use threshold-cryptography to solve this problem, but then all servers know

about all transactions from the user. This is specifically a problem in privacy-enhanced

cryptocurrencies like Monero.

In this paper we apply Tandem to the creation of transactions in Monero. We show how

to build a Threshold Cryptography Protocol for Monero, and prove that it is secure and

privacy preserving.

Creating Monero transactions using Tandem allows securing the private key of a user

against malicious use by an attacker.

1 Introduction

With the upcoming Web 3.0, more and more services rely on private keys. This includes, but

is not limited to, blockchains and identity management systems that allow a user to selectively

disclose one or more attributes. Another element of Web 3.0 is decentralization, which makes it

harder to revoke a stolen or lost private key.

The most common protections for these private keys includeWallets as a service like hardware

wallets and hardware security modules. But these solutions all contain a single point of failure

that can leak the private key or lead to abuse. To avoid a single point of failure, one can use

threshold cryptographic solutions like Calypso or Sepior [https://sepior.com/]. However, for a

service that is privacy preserving, these solutions leak the identity of the key user.

For this reason Tandem has been developed. It is a threshold-cryptographic solution like the

ones cited above. But it does not leak the identity of the client, which is important when it is

used for a service that is privacy preserving. The Tandem paper shows how to use this solution

for Attribute-based credentials. In this setting a simple threshold-cryptographic solution can

protect the key, but it will deanonymize the user.

We looked at the Monero blockchain, which provides anonymous token transfers. These

transfers are initiated with transactions that are signed by a private key. We show how to

1



convert a Monero transaction into a Tandem-compatible protocol without the need to modify

Monero. Our contributions are the protocols to be used between the client and the Tandem

server, tests on the Monero test network, and a reference library written in Rust.

2 Monero and Tandem

2.1 Monero

Monero is a cryptocurrency built with a blockchain that has interesting privacy preserving prop-

erties: all data from a transaction, like the senders, the receivers, and the amounts, are hidden in

the public blocks. Only the participants in the transaction, that is the sender and the receiver,

can decrypt the information. Even though this information is hidden, Monero is secure against

double-spending or rogue minting of assets through the use of Zero Knowledge Proofs and Group

Signatures.

Like most of the cryptocurrencies using blockchains, Monero also relies on a private key to

sign transactions. This is why using Tandem to secure signing the transactions can improve the

security of the system against key theft under certain circumstances.

Monero uses the Unspent Transaction Output (UTXO) model, which means that each address

is only used twice: once when it receives tokens, and once when the tokens are spent. These

addresses are derived from what Monero calls view keys. Contrary to spending keys, view keys

only allow to discover the transaction addresses and the amount sent. In order to move tokens

from one address to another, the client needs to sign using the spending key. If this key is stolen

by an attacker, all funds from all address can be moved to an address chosen by the attacker.

For this reason we want to protect the usage of the spending key with Tandem.

2.2 Tandem

Tandem is a protocol that uses a central server, but still allows to add the following two securities

in a privacy-preserving manner:

• Rate limiting of key usage

• Blockage of key usage in case of theft

The first security reduces the damage an attacker can do between the time they get access to

the key and the time the client blocks it. While both can be implemented using a threshold-key

sharing mechanism, this would not be privacy-preserving, as all the servers involved would learn

who is using their key. Tandem allows to implement both of these securities without the servers

learning anything about who is using their private key.

If an attacker can get hold of the phone set up for use with Tandem, they will be able to

create some transactions. They will be rate-limited by Tandem, and can only empty addresses

until the client discovers the attack and blocks them, or until they run out of Tandem tokens.

As we must suppose that the attacker knows the addresses of the victim, as well as the amount

of tokens in each address, we can limit the damage by putting a similar amount of tokens in each

2



Figure 1: Comparison of emptying accounts with similar values and emptying accounts with high values

Figure 2: Actors in our system

address. By doing this, we can limit the amount of tokens stolen to the number of addresses an

attacker can empty before they are detected and blocked. On the contrary, if most of the tokens

are in only one address, the attacker will simply start emptying this address, and future blocking

will not limit the damage to the user. The figure 1 shows two cases, where in each cases the

attacker gets to empty the same number of accounts. In the first case, the attacker can withdraw

much less funds than in the second case.

3 System

As can be seen in figure 2, Monero does not have to interact with the Tandem system. Only

the Client interacts with Tandem. This means that there is no need to change the way Monero

is built, but only the way the client interacts with Monero. In a regular interval, the client will

request tokens from the Tandem server and store them locally. Now every time the client wants

to sign a transaction for Monero, they send a token to the Tandem server and receive an answer

that can be used to finalize the signature. The Tandem server never knows if a given token

belongs to a certain client. Also if the client sends two tokens to the server, it cannot know that

these two tokens belong to the same client.

We consider two threat models: in the first, the attacker has complete control over the phone

of the client. This attack allows to withdraw funds from the clients addresses, so that the client

has a financial loss. In the second, the Tandem server tries to infer who is asking for a signature

by looking at the blocks produced by Monero. So if the Tandem server has knowledge of the

produced signature, it can find the corresponding transaction and get a list of possible input and

output addresses for each client. Over time the Tandem server could get enough information to

censor certain clients.

3



The Tandem server can protect against the above threats by giving the following security

guarantees:

1. Rate limiting of signatures per client

2. Allowing the client to block future signatures

3. Letting the client sign anonymously Monero transactions

To implement this, the Tandem server gives each client the possibility to get a limited amount

of anonymous Tokens. Each token gives the client the possibility to request a signature on a

Monero transaction from the Tandem server. During this signature request, the Tandem server

doesn’t learn anything about the client, except that they have the right to create a signature

during this period and that they are not blocked. To limit the amount of signatures an attacker

can do, the client can choose the validity of the tokens within epochs, which can span hours or

days. In such a way only a certain amount of tokens can be used during an epoch, and if an

attacker can steal the tokens, they cannot use them outside of this time window.

4 Background

When a client wants to transfer funds in Monero, they need to create a transaction and sign

all the input funds using MLSAG signatures. The transaction contains different elements, as

described in (02M, 6.3), but only a subset of those need to be protected by Tandem.

4.1 Notation

In order to simplify the notation used by Monero, the following changes are done to the Monero

addresses compared with the document Zero to Monero (02M):

• don’t include the t to indicate different address inputs

• don’t include the B to indicate Bob’s keys

• use a capital S and U to indicate the Tandem server and user share respectively

4.2 Tandem with Monero

In section 5 we describe the TCP protocols necessary to run Monero with Tandem. Here we

describe the TCPs needed, as well as the optimizations necessary for this combination to work

well.

4.2.1 Threshold Cryptography Protocols

A transaction of Monero is comprised of the following parts (02M 6.3). Parts with no involvement

of the private key of the user have been omitted:

• MLSAG Signature, allows hiding the source of the payment by creating a multi-signature

4



• Key image, an input address corresponding to the sender, but obfuscated

• Pseudo output commitment, used to hide which of the inputs is the real input

• Output commitment, used to prove that the sum of the inputs equals the sum of the

outputs

• One-time address, a destination address that hides the receiver, while allowing detection

of the address by the receiver

• Encoded amount, in such a way that the signer can still prove that the sum of the inputs

is the same as the sum of the outputs

• Range proof, a proof that none of the inputs are negative, which would allow the signer to

create coins.

They are described in details in the next section.

4.3 Monero Addresses

As described in (02M, 4), Monero uses different types of addresses to hide payment patterns:

• One-time addresses are created by the sender from the public receiver’s address

• Subaddresses can be created by a receiver to differentiate payments

• Integrated addresses are created by the sender by including a payment-ID that can only be

read by the receiver

• Multisignature addresses that need more than one sender to sign before the transaction

can be accepted - but they are out of scope of this document

The different addresses are used like this:

1. The receiver publishes one of the following:

(a) their Kv,Ks keypair OR

(b) their subaddress Kv,i,Ks,i

2. The sender generates a one-time address

3. Optional: the sender adds a payment-ID to create an integrated address

5



4.3.1 One-Time Address

To create a one-time address out of a receiver’s keypair, or a receiver’s subaddress keypair, the

sender only needs to add a random number and can create the payment address:

K0 = Hn(rK
v)G+Ks (1)

In the case of a subaddress, use Kv,i,Ks,i instead of Kv,Ki. To spend the content of this

address, the receiver has to calculate the corresponding private key like this::

k0 = Hn(rK
v) + ks (2)

According to (02M, 3.5), the sender has to hold the kπ for every input they want to spend.

This corresponds to the k0 described in Equation 2. The sender has to calculate the following:

K̃ = kπHp(Kπ) (3)

= (Hn(rK
v) + ks)Hp(Kπ) (4)

= Hn(rK
v)Hp(Kπ) + ksHp(Kπ) (5)

Kπ is the one-time address of a previous output. As ks is protected by the Tandem protocol,

we need to create a TCP to calculate K̃. Looking at Equation 5, the left part of the sum can be

calculated by the client, and only the right part needs to be protected by the Tandem protocol.

4.3.2 Pseudo Output Commitment

According to (02M, 5.4), the pseudo output commitment is calculated without any private key

intervening, only blinding factors. So we need to keep in mind that we should not threshold-share

the blinding factors. If we must do so, this section needs to be revisited.

4.3.3 Output Commitment

According to (02M, 5.4), the user needs the blinding factor of the previous output commitment.

This blinding factor is calculated using Hn(rK
v, t), which depends only on public parameters.

4.3.4 Encoded Amount

According to (02M, 5.3), the encoded amount depends on Hn(rK
v, t), which can be calculated

as it only depends on public parameters.

4.3.5 Range Proof

According to the Bulletproofs paper, I cannot find any private key intervening in the creation of

the Bulletproof. So IMO there is no need to use Tandem for the Range proof.

6



4.4 MLSAG Signature

The MLSAG signature of Monero is described in (02M, 3.5). A summary of the steps is:

1. Key image: K̃j - this can be calculated as described in subsubsection 5.2.1.

2. Generate random numbers: αj ∈R Zl and ri,j ∈R Zl. αj need to be used in the TCP, while

the ri,j can be chosen by the user. This is because the αj also appear in step 5, which

involves the private keys of the inputs, and so must be done using a TCP.

3. Compute initial commitment cπ+1 also needs to be done in a TCP, as it involves the αj .

4. Compute other commitments ci+1 can be done on the user’s side, without the involvement

of the Tandem server.

5. Define all rπ,j needs to be calculated in a TCP, as it involves the private keys kπ,j

4.4.1 Threshold Cryptography Protocol (TCP)

To use Tandem, you need to be able to rewrite an existing cryptographic protocol as a Thresh-

old Cryptography Protocol (TCP). Furthermore, this TCP must be linearly randomizable. So

Tandem can be used to secure the keys of any cryptographic scheme (e.g., encryption, signature,

or payments) for which a linearly randomizable threshold cryptographic version exists.

4.4.2 Blinding Public Inputs

Some of the calculations that need to be turned into a TCP contain public inputs, like when

calculating αiHp(Kπ,i) in the MLSAG signature. The simplest solution is that the user sends

Hp(Kπ,i) to the server, so that the server can multiply it with its αi,S . However, this will give

the server some information about the user, as the Hp(Kπ,i) references a unique input. So the

user has to blind the input to the server like this:

βHp(Kπ,i) (6)

Now the server can multiply this with αi,S and send it to the user. Then the user can multiply

this with β−1 to get the desired result.

5 Threshold Cryptography Protocols

5.1 One Time Address

To create a TCP-version of this, the user will have to ask the server to calculate

k0S = Hn(rK
v) + x̃s

S (7)

with x̃s
S being the server share of the private key xs. But this means that the user will be able

to re-construct x when receiving the k0S , which is of course not wanted. To avoid the disclosure

of the private share of the tandem server, this calculation is only executed when actually using it

7



Server User
x̃S x̃U

β ∈R Zp

H̃ = βHp(Kπ)
H̃←−

H̃S = x̃SH̃
H̃S−−→

H = β−1H̃S + x̃UHp(Kπ) = ksHp(Kπ)
r ∈R Zp

K̃ = Hn(rK
v)Hp(Kπ) +H

Table 1: A TCP implementation to calculate the Key Image needed in a Monero transaction.

in a MLSAG signature. As will be shown in subsection 4.4, applying k0 in the MLSAG signature

will avoid the problem of leaking the Tandem server share.

5.2 Simple Inputs

A number of inputs for the transaction are quite easy to transform into a TCP protocol. They

are treated separate from the subsection 4.4 calculation of the MLSAG.

5.2.1 Key Image

The term Hp(Kπ) needs to be blinded, in order to avoid that the Tandem server can recognize

the client, as this expression is publicly available and linkable to a single user. So the TCP

protocol becomes can be written as in Table 1.

5.3 MLSAG Signature

5.3.1 Compute Initial Commitment

In this step, the server and the user will chose the initial αj,S and αj,C , which will also be used

in subsubsection 5.3.2. All indexes j are computed for the whole range of {1, 2, ...m}.

5.3.2 Define all rπ,j

Before calculating the closing rπ,j values, the user has to calculate the ci+1 values for i =

π + 1, ..., n− 1, 0, 1, ..., π − 1. This is possible without reverting to either one of the private keys

or the the αj values, so it is done on the user side without intervention of the server. Now the

user has the value of cπ for the following TCP. Also, the server and the user use the same values

for αj,S and αj,U as in subsubsection 5.3.1. For the private keys to the input kπ,j , they need to

be calculated according to subsubsection 4.3.1, but this time inside of the equation for rπ,j :

8



Server User
αj,S ∈R Zp αj,U ∈R Zp

βj ∈R Zp

H̃j,U = βjHp(Kπ,1)
H̃j,U←−−−

H̃j,S = αj,SH̃j,U

H̃j,S−−−→
H̃j = β−1

j H̃j,S + αj,UHp(Kπ,1)

Gj,S = αj,SG
Gj,S−−−→

Gj = Gj,S + αj,UG

cπ+1 = Hn(m, [Gj ], [H̃j ], ...)

Table 2: A TCP implementation to calculate the initial commitment needed in an MLSAG.

Server User
x̃S x̃U

αj,S αj,U
cπ←−

rj,S = αj,S − cπx̃S
rj,S−−→

rj,U = αj,U − cπx̃U

rπ,j = rj,S + rj,U − cπHn(r̃jK
v)

Table 3: A TCP implementation to calculate the rπ,j needed in an MLSAG.

rπ,j = αj − cπkπ,j (8)

= αj − cπ(Hn(r̃jK
v) + ks) (9)

= αj − cπHn(r̃jK
v)− cπk

s (10)

To avoid giving away any additional information, we only calculate αj − cπk
s with the TCP.

The TCP for the calculation of rπ can be found in Table 3.

Question: is it safe to send cπ to the server without blinding?

6 Conclusion

We present an adaption of Tandem to the Monero blockchain, allowing to protect the private

key from theft while keeping signing of transactions private. The extension with Tandem of a

Monero transaction does not need any change in the Monero protocol. We showed what the

client and the server need to calculate, and show that the server does not gain any knowledge

about the users’ identity when they sign a new transaction.

9


	Introduction
	Monero and Tandem
	Monero
	Tandem

	System
	Background
	Notation
	Tandem with Monero
	Threshold Cryptography Protocols

	Monero Addresses
	One-Time Address
	Pseudo Output Commitment
	Output Commitment
	Encoded Amount
	Range Proof

	MLSAG Signature
	Threshold Cryptography Protocol (TCP)
	Blinding Public Inputs


	Threshold Cryptography Protocols
	One Time Address
	Simple Inputs
	Key Image

	MLSAG Signature
	Compute Initial Commitment
	Define all r-pi-j


	Conclusion

