
École Polytechnique Fédérale de Lausanne

Design and evaluation of mixers
in a high-churn environment

by Derya Cögendez

Master Project Report

Linus Gasser

Project Supervisor

Pierluca Borsò-Tan

Project Advisor

EPFL IC IINFCOM DEDIS

BC 310 (Bâtiment BC)

Station 14

CH-1015 Lausanne

January 10, 2025

Acknowledgments

I would like to thank Linus Gasser for his invaluable help and input throughout the project, as well

as the opportunity to work on Fledger, and Pierluca Borsò-Tan for his guidance and for making this

project possible.

Lausanne, January 10, 2025 Derya Cögendez

0ChatGPT, a large language model by OpenAI, was used to improve the language and grammar of this report.

2

Abstract

Fledger is a modular, peer-to-peer network that runs in browsers and can be easily extended with

additional services. One such service, the web proxy, allows peers to act as proxies for one another,

offering increased privacy and, depending on the proxy’s rules, additional security. However, it does

not protect against traffic analysis by network observers or hide traffic patterns from the proxy node.

In this project, we review existing anonymous communication systems applicable to this specific

use case of a web proxy. We create a proof-of-concept implementation integrated as a service within

Fledger, and fine-tune and evaluate it. Additionally, we aim to improve the reliability of web proxy

requests with this implementation in the inevitable presence of churn through simple mechanisms

such as retrying and sending duplicate messages. While these mechanisms, particularly dupli-

cate messages, improve the reliability of web proxy requests, further investigation into additional

mechanisms is needed to enable robust web browsing through a mix network within a peer-to-peer

environment.

3

Contents

Acknowledgments 2

Abstract 3

1 Introduction 6

2 Related Work 8

2.1 Low Latency Anonymous Communication Systems . 8

2.2 Approaches to Reliable Message Delivery . 10

2.2.1 More on mix networks . 10

3 Background 11

3.1 Fledger . 11

3.1.1 Communication between nodes . 11

3.1.2 Modules . 12

3.2 The Loopix Anonymity System . 13

3.2.1 Types of Messages . 14

3.2.2 Parameters . 15

3.2.3 Security Goals and Assumptions . 16

4 Design 18

4.1 Loopix Integration into Fledger . 18

4.1.1 Path of a Message . 18

4.1.2 Threat Model and Assumptions . 20

4.2 Adaptations for more reliable message delivery . 21

4.2.1 Retry Mechanism . 21

4.2.2 Duplicate Messages . 21

5 Implementation 22

5.1 Communication between Modules . 22

5.2 Sphinx Packets . 23

5.3 Bootstrapping . 24

5.3.1 Signaling Server . 24

4

5.3.2 Public key discovery . 24

5.3.3 Node address in Loopix messages . 24

5.3.4 Unique Message Identifier . 25

5.4 Performance Improvements . 25

5.4.1 Worker Pool . 25

5.4.2 Loopix Message Storage . 25

6 Evaluation 26

6.1 Experimental Setup . 26

6.2 Fine tuning Loopix Parameters for Web Proxy Requests 27

6.2.1 Latency Components . 28

6.2.2 Mean number of messages in the mix . 29

6.2.3 Payload Message Rate and Mean Delay . 31

6.2.4 Number of messages retrieved and time-to-pull 34

6.3 Reliability Mechanisms . 35

6.3.1 Retrying . 35

6.3.2 Duplicate Messages . 36

6.4 Overview . 37

7 Future Work 39

7.1 Bootstrapping and Node Discovery . 39

7.2 Stateful Fledger Loopix Module . 39

7.3 Erasure Codes . 40

7.4 Mix regions . 40

7.5 Discussion of Providers . 41

7.5.1 Better Processing Mechanism . 41

7.5.2 Removal of Providers . 41

8 Conclusion 43

Bibliography 44

5

Chapter 1

Introduction

Fledger [13] is a peer-to-peer network designed to operate directly in the browser without the need

for proxies. It enables direct communication between browser nodes and includes planned features

for sharing resources such as disk space, CPU, and network bandwidth. Current applications include

a decentralized chat system and a web proxy. However, the existing web proxy raises significant

privacy concerns. While it reduces the visibility of a user’s internet activity to their ISP, it allows

the proxy node to monitor traffic patterns. Proxy requests expose the user’s address, and repeated

requests from the same node can reveal usage patterns. Moreover, the web proxy service lacks

safeguards against network observers within the peer-to-peer system.

To address these privacy concerns, integrating an anonymous communication system into

Fledger’s web proxy application would greatly enhance user privacy. Tor [9] is a well-known candi-

date for such an application, but it provides only limited protection against traffic analysis [3]. In

contrast, mix networks [4] offer stronger defenses against some of Tor’s privacy shortcomings but

suffer from high latency due to their round-based packet routing.

This project evaluates existing anonymous communication systems for their suitability in the

Fledger web proxy application. The evaluation focuses on criteria such as low latency, scalability,

threat models, message throughput, resilience to churn, and the availability of reference imple-

mentations. Various systems were reviewed, include but are not limited systems such as Prifi [1],

Atom [15], and Riffle [16]. Some systems demonstrated low latency but lacked scalability, while

others combined good latency and scalability but failed to meet the bandwidth requirements of a

web proxy. Based on this analysis, Loopix was identified as the most suitable option, offering low

latency and adaptability to diverse settings through the use of cover traffic.

Following the selection of Loopix [19], we developed an implementation integrated into Fledger

as a service. This implementation was specifically optimized for the web proxy use case through

extensive experimentation, achieving an average end-to-end latency of 2–3 seconds. However, there

6

is a critical issue with this implementation.

While the Loopix paper primarily addresses privacy aspects, it does not consider the issue of

reliable message delivery—a significant problem in the context of Fledger’s peer-to-peer network,

where nodes can frequently join and leave. After developing and tuning the Loopix-based imple-

mentation for the web proxy, we explored strategies to enhance reliable message delivery in the

presence of churn.

Although many studies aim to improve reliable message delivery in mix networks, such as

Cashmere [26] with mix regions and Hybrid Routing [25] with dynamic routing. This project extended

Fledger with two approaches to message retries and duplication. These techniques improved the

rate of successful web proxy requests under conditions of mix node failure. Notably, sending four

duplicate messages achieved nearly the same success rate for web proxy requests with 17% of mix

nodes failing as when all nodes were operational. However, further work is needed to make the

Fledger Loopix module a fully viable solution for web browsing. We leave the implementation and

evaluation of additional mechanisms for future research.

7

Chapter 2

Related Work

This chapter is divided into two parts. The first part discusses the various anonymous communica-

tion systems we considered for integration into Fledger and explains why we ultimately chose to use

Loopix. The second part explores approaches to more reliable message delivery in mix networks,

detailing the methods considered to enhance the the reliability of Fledger’s web proxy service.

2.1 Low Latency Anonymous Communication Systems

Having identified our initial goal, namely making Fledger web proxy more privacy preserving, the

first step was to find a suitable mix network or more broadly an anonymous communication system

that can be used in the context of browsing the web through a web proxy.

Atom [15] introduces a scalable anonymous messaging system that defends against traffic analy-

sis and active adversaries. It organizes servers into small groups called anytrust groups, ensuring

that each group has at least one honest server to maintain security. It is highly scalable, capable

of handling millions of short messages, and incorporates mechanisms to tolerate server failures.

However, it achieves a latency of 28 minutes for routing a million messages. This latency is suitable

for asynchronous applications such as microblogging however, for the use case of accessing web

pages, Atom would not be suitable.

Riffle [16] is anonymous communication system for bandwidth and computation, resistant to

traffic analysis. It uses hybrid verifiable shuffles and private information retrieval to provide strong

anonymity for users. Riffle achieves less than 10 seconds of latency for up to 100,000 users in micro

blogging applications. And for file sharing applications, it supports over 100KB/s. While the latency

is significantly more suitable to a web proxy application than atom, it’s latency and bandwidth will

still be insufficient for a web browsing application.

8

Vuvuzela [12] is a scalable and private messaging system designed to resist traffic analysis. It

utilizes differential privacy techniques to ensure both metadata and communication patterns are

hidden. The system routes user messages through a chain of servers and utilizes cover traffic to hide

communication patterns. While achieving a rate of 68,000 messages per second for up to 1 million

users, it has a end-to–end latency of 37 seconds. While this latency would be very quite suitable for

private messaging, it is again not viable to expect users to wait 37 seconds to access a web page.

Groove [2] is a private messaging system designed to support multiple devices per user, enabling

asynchronous communication even when receivers are offline. It introduces an "oblivious delega-

tion" mechanism, using untrusted service providers to manage mix network interactions to hide

communication patterns. While Groove achieves a 32-second latency and scales to 1 million users,

its primary focus differs from our goals: it emphasizes enabling anonymous communication across

multiple devices with minimal battery consumption, tailored for smartphone compatibility.

PriFi [1] is a low-latency DC-net protocol, achieving approximately 100ms latency while support-

ing up to 100 clients. While it provides very low latency for a small number of users within the same

local network, it is specifically designed for LAN environments and not large-scale deployments. Its

limited scalability makes it unsuitable for broader peer-to-peer networks.

Loopix [19] is an anonymous communication network that leverages cover traffic and message

delay instead of round-based mixing. It achieves latency in the range of a few seconds while

remaining scalable. Additionally, it has two reference implementations available, one by the authors

of the paper [11] and another by DeepMind [7], making it a great choice for use in web browsing and

efficient integration into Fledger’s web proxy service.

Figure 2.1: Overview of analyzed anonymous communication systems

9

2.2 Approaches to Reliable Message Delivery

In the Loopix anonymity system (see section 3.2 for details), the path of a message is determined at

the source and encrypted with the public key of each mix node in the route. This introduces single

points of failure at each mix node, which becomes especially apparent in high-churn environments.

2.2.1 More on mix networks

There are many studies that look into more reliable message delivery in mix networks.

Cashmere [26] introduces the concept of relay groups instead of single-node mixes to enhance

reliability Each relay group consists of multiple nodes that share a public/private key pair, allowing

any member of the group to act as the mix. When a message reaches a relay group, it can be

processed by any member of the group and forwarded next hop along the route. Even if some nodes

within a relay group fail or go offline, the message can still progress as long as at least one member

of each relay group is available.

In CAT [17], messages are routed through relay groups as well. Instead of pre-selecting fixed

relay nodes, CAT uses probing to identify multiple valid paths within these relay groups. If a node

fails during the transmission of a message, the route is switched to a backup one, which is possible

thanks to commutative encryption keys.

Hybrid Routing [25] takes a similar approach by combining relay groups and determining part

of the path dynamically, and the Nym Mixnet [8], also based on Loopix, introduces acks with

retransmissions using the single use reply blocks that in built into Sphinx [6] packet format.

While this project goes not include extension of Fledger Loopix implementation of these mecha-

nisms, we discuss potential ways to integrate them in chapter 7.

10

Chapter 3

Background

3.1 Fledger

Fledger is a P2P network that can be run entirely using browsers, it’s goal is to enable user to share

resources such as CPU, bandwidth, disk space etc. It runs the WebRTC protocol to communicate and

uses a Signaling Server to enable nodes to discover each other and establish connections. Although

it can be run entirely using browsers, Fledger nodes can also be run as standalone nodes. This

project is a fork of Fledger.

3.1.1 Communication between nodes

When a new Fledger node joins the network, it creates a key pair and derives and ID from it. This ID

is called a nodeID, it is nodeID is the main routing information for Fledger nodes.

After the node starts up and creates its routing information, it announces itself to the Signaling

server, which in turn gives the node information about other nodes that are online.

When the node wants to communicate with another node, it will send a message to the signaling

server. The signaling server will act as a mediator for the two nodes to negotiate a connection. Once

the connection is established between the nodes, they can communicate through their browsers.

In Figure 3.1, Peer 1 sends a message to the Signaling server to start establishing a connection

with Peer 2, they communicate through the signaling server to negotiate the connection. Once the

connection is established, they can directly communicate without the need for the Signaling server.

11

Figure 3.1
Figure from Medium: "Choice of Signaling Server in Web Real-Time Communication" [18]

3.1.2 Modules

For each functionality in Fledger, there is a separate module. This section will introduce the relevant

Fledger modules to this project.

• Network

Network module uses the WebRTC protocol and enables other modules send messages

through its messages. It can be used for both browsers and for Fledger nodes.

• Gossip and Random Connections Modules

Gossiping module enables messages to be propagated through the Fledger network, and it

uses Random Connections module. Random Connections module is designed to establish

random connections between the nodes, and it uses the network module to send messages to

the selected nodes. These two module are used for the bootstrapping of the Loopix Module for

the purpose of experimentation. See section 5.3 for further details about the bootstrapping.

• Web Proxy

Web proxy module handles web proxy requests, it can be used to create and respond to request

to get web pages. It creates a unique ID for a request and sends the message. When a node

12

responds to a request, it sends multiple messages with the same unique ID as the request,

which enables the web proxy client to collect the messages into the requested page. If the

client does not receive the complete response within a set period of time, the request will

timeout.

• Overlay

This module acts as a translator/wrapper for Fledger modules. While sending a message

through gossip or web proxy this module will wrap the message and then send it to the specific

module. For example if node A wants to send a web proxy message to node B, node A will

create web proxy message, which will be sent to Overlay module, still within node A, and

Overlay module will translate for the corresponding module, for example random connections,

and send the translated message to this module, which will finally send the message to the

network module, and the message will be sent to node B through the WebRTC connection.

Linus Gasser has kindly created this module to help integrate Loopix module into Fledger.

• Loopix

In this project we have created a Loopix module that can be used as a middle man between

any module and the network module. The main purpose is to be used with web proxy but it

can be used to send other kinds of messages from Fledger modules as long as they are sent

through an Overlay.

3.2 The Loopix Anonymity System

This section will give a summary of the Loopix Anonymity System introduced in [19]. Loopix is a

continuous time mix network. Unlike the traditional mix networks introduced by Chaum [4], in

continuous time mix networks, which operate in rounds. Packets are stopped for a specified delay

at the mix node and then sent on their ways. This delay is drawn from an exponential dsitribution.

Loopix combines this stop-and-go [14] mixing with cover traffic to further hide traffic patterns

and avoid flooding attacks (n-1) [22], which were possible with round based mix networks.

Quite like the Tor network, the route of the message is chosen by the user in advance and

the messages are encapsulated in layers of encryption with public keys each of node in the route.

However, unlike the Tor network, each message goes through a separate route, with a different delay

at each node in the route. These delays combined with separate routes, make it harder to perform

traffic analysis by observing entry and exit nodes, which is quite trivial with Tor [9].

The Loopix network consists of three different roles. Nodes that use the mix network are referred

to as clients. Each client chooses a provider, which serves as the entry point to the network for

that client. A client routes all of its traffic through its provider, which, in turn, forwards the client’s

messages to the mix network. Additionally, the provider stores any messages destined for its client.

13

When the client is online, it retrieves these stored messages from its provider.

Finally, there are mix nodes. Mix nodes are arranged in a stratified topology [10], and their main

purpose is to remove a layer of encryption from the messages that they receive, wait for a delay

which is specified in the header of the decrypted packet, and then send the message to the next

node in its route. The mix node only knows about the delay, and previous and next nodes.

Figure 3.2
Figure 1 from The Loopix Anonymity System paper [19]

The typical route of a message from a client goes to their provider, who forwards it to the mix

node at the first layer of the stratified topology. Each mix node at each layer of the mix network,

receives and forwards this message, until it arrives at the provider of the destination client. The

destination provider stores the message, until the client retrieves it. Of course, creating this route

requires the source client to know the addresses of mix nodes at each layer as well as the destination

client and the provider of the destination.

The Loopix messages are encrypted using Sphinx packet format [6] which provides a compact

encryption scheme specifically designed use in mix networks.

3.2.1 Types of Messages

• Subscribe Message

When a client joins the network client sends a subscribe message to a provider of its own

choosing. When a provider receives a subscribe message, it simply adds the client to its list of

subscribed clients and stores any messages that arrive for this client.

14

• Payload Message

If a client want to send a real message to another client, it creates a payload message. These

payload messages are then put into a queue and the client pops messages from this queue at

a constant rate.

• Drop Message

If the client payload message queue is empty, the client sends a drop message instead. These

message are sent to a random random provider and they are dropped at the destination. All

nodes, clients, providers, and mix nodes, periodically send drop messages.

• Loop Message

Loop messages give the Loopix anonymity system its name. They are part of the cover traffic

along with the drop messages. Loop messages are sent by a node to itself, routed through a

random provider. They simulate receiving a reply to a message, and provide important some

privacy properties which will be detailed in the next section.

• Pull Message

When a client is online, it periodically asks provider whether the provider is storing any many

messages for it. Pull message serves this purpose. When the provider receives a pull message,

it will send a predetermined number of messages back to the client. These message messages

can be real messages destined to the client, or messages created by the provider to fill up the

predetermined number.

• Dummy Message

Dummy messages are messages sent to a client by the provider as a response to pull messages,

if the provider does not store enough messages. For example, if the provider is storing 3

messages and needs to send 5, it will create 2 dummy messages to pad its response.

3.2.2 Parameters

• Path length (l)

This is the number of hops a packet goes through in the mix node. Although chosen by the

clients, the authors of the Loopix paper recommend a path length of 3 or more. Each hop of

the packet would be in layer of the mix network topology.

• Mean Delay (µ)

This is the average amount of time a packet stops at a mix node. This value is used to draw

from the exponential distribution while the a node is creating a packet that will go through

the network. For each hop, one value is drawn from this distribution. We will use mu in

milliseconds.

15

• Payload Message Rate (λP)

The rate at which the clients sends messages from it’s "real" message queue. In this project we

will use all λ values as x per second, however λ values can be rates with any time unit.

• Loop Message Rate (λL)

The rate at which each node sends loop messages. Although the Loopix paper distinguishes

between the loop message rate of mix nodes (λM)and clients (λL), in this project, for simplicity

we will use the same values for both and refer to it as λL .

• Drop Message Rate (λD)

The rate at which all nodes send drop messages.

• Time-to-Pull (tpul l)

This is the amount of time that a client waits between each pull message to its provider.

Although not explicitly defined in the Loopix paper, it can be found in the reference imple-

mentation [11] by the authors. In this project we will use seconds to define this value.

• Number of messages retrieved (NR)

The number of messages the provider sends each time it receives a pull request. It always

sends this number of messages to ensure that an adversary cannot tell whether a client is

receiving messages or not. If there aren’t enough messages for the client, it will also send

dummy messages to make sure exactly NR messages are in its response. Again this parameter

is not explicitly defined in the Loopix paper, but can be found in the reference implementation.

• Mean number of messages in a mix node

An important security parameter in Loopix is the mean number of messages in a mix node

at a given time. This is essentially number of messages that are being "mixed" at the mix

node. If an adversary observes messages going in and out of mix node for a given time, it will

observe a number of messages coming in per second, denoted λ. And on average 1
µ messages

per second will be leaving the mix node (not taking into account cover traffic generated by

the mix node). The value λ
µ denotes the mean number of messages in a mix node at a given

time. Authors of the Loopix paper recommend a value of λµ = 2, since this would mean that

there is on average at least two messages at a mix node at a given time, which makes it more

challenging for an adversary to correlate incoming and outgoing messages.

3.2.3 Security Goals and Assumptions

In the threat model of Loopix, it is assumed that an adversary is capable of observing all traffic in

the network. The Loopix mix network is designed to protect against sender-receiver linkage. Even

in scenarios where all but one mix node in the message route are compromised, and there are

corrupt providers, Loopix offers strong protection against an adversary’s attempts to determine

whether a sender and receiver are communicating. It is important to note that in these assumptions,

16

a corrupt provider is considered honest-but-curious—seeking to learn as much as possible while

still following the protocol without misbehavior.

Particularly at a single mix node, Loopix provides strong protection against trickling attacks [22],

where the adversary blocks all but one packet from entering the mix node and the mix node and

attempts to correlate the outgoing packet with its destination. Thanks to the presence of drop and

loop messages that are sent periodically at each mix node, adversary cannot reliably identify which

packet they allowed into the mix node. This being said adversary can delay, drop, inject packets

into the network with the purpose of learning information about the communications of the honest

clients.

In addition, Loopix protects against an adversary attempting to determine whether a sender is

communicating with any receiver. Since, each client periodically sends cover traffic, even in the

presence of corrupt providers, an observer cannot tell the difference between a real and cover traffic.

All messages in the system are indistinguishable.

Under the assumption of only honest providers, an adversary cannot determine whether a client

is receiving actual messages, as the provider always sends a fixed amount of traffic for each pull

request from the client. Additionally, clients do not need to be online to receive messages, as the

provider stores them until the client retrieves them. Even when the client is offline, an observer

cannot distinguish between cover traffic and real messages sent to the provider. However, this

protection relies on the honesty of the provider, as it knows how many messages the client receives.

Overall, Loopix provides robust protection against passive traffic analysis and adversaries that

control a fraction of the mix nodes and can inject, delay, or drop messages. However, the model

assumes that the adversary’s goal is to learn information about the clients rather than disrupt

message delivery.

17

Chapter 4

Design

4.1 Loopix Integration into Fledger

Keeping in mind that Fledger contains many modules and can easily be extended with new ones,

we set out to create a Loopix module that can fit between any Fledger module and the network.

Although primary focus of this project has been to use the Loopix module as an intermediary

between the web proxy and the network modules, Fledger Loopix module described here has been

designed to be compatible with other modules as well. This section provides an overview of Fledger

Loopix module, while detailed implementation specifics can be found in chapter 5.

4.1.1 Path of a Message

Loopix module can be set up as any other Fledger module, however if a module is intended to work

with Loopix module, the overlay module for the translation needs to be set up together with that

module.

To illustrate, let us consider the example of the web proxy, as this is the main goal of this project.

Assuming web proxy, overlay and Loopix modules are all setup, when a node wants to send a web

proxy request, it creates a web proxy request as it normally would. However, instead of directly being

sent to the proxy node, the request is first passed to the overlay module, where it is parsed into a

format suitable for the Loopix module. While this process can involve any module that is capable of

sending a message to the overlay module, we will continue with the example of the web proxy for

clarity.

When Loopix module receives a message from overlay, provided that it has the client role

(participating in Fledger Loopix network as a user), it will create a route and delays for each hop

18

along the route as discussed in section 3.2. This information is used to create a layered encryption

of the overlay message.

The encrypted message is then forwarded to the network module. At this stage, the network

module only has access to the address of the next node in the route and the ciphertext. It transmits

the message to this address it is provided.

The network module at the next node receives the message and forwards it to the Loopix module.

The Loopix module removes one layer of encryption from the message, provided that the node is

the intended recipient and the message is well-formed. The decrypted message reveals routing

information for the next hop, the specific delay to observe before forwarding, and the ciphertext

for the subsequent node. After waiting for the designated delay, the node sends the message to its

network module, which forwards it to the next hop. This process repeats until the message reaches

the provider of the intended recipient.

As usual, the provider receives the message in its network module, which then forwards it to the

Loopix module. In the Loopix module, another layer of encryption is removed. However, instead

of immediately forwarding the message, the provider stores it in its local storage until the client

requests messages. When the provider receives a pull request from the client, it sends the stored

message to the client along with other stored messages or dummy messages if there aren’t NR

message in it’s storage for that client. If there are more than NR message in it’s storage it will send

the first NR messages that has arrived. Pull request messages as well as the messages stored by the

provider are encrypted and go through the network module as usual.

Finally, the destination client receives the message in its network module and forwards it to the

Loopix module, where the final layer of encryption is removed. When the Loopix module identifies

itself as the final destination, it forwards the decrypted message to the overlay module. The overlay

module parses the message back into a format understandable by the originating module—in this

case, the web proxy module—and sends it to that module.

The web proxy module then processes the request, retrieves the requested URL, and sends

corresponding response back to the originator of the request. The response is passed through

the Loopix module, encrypted again, and forwarded through the network module. The web proxy

response is composed of multiple messages, and each message traverses all the hops along a separate

route, eventually reaching the provider of the originating client and, finally, the originator itself.

Figure 4.1 provides a simplified overview of this process, omitting the overlay and network

modules for clarity. The initial web proxy get request can be traced along the green arrows, while the

response to this request (illustrated by one of the messages) follows the blue arrows. The red arrows

denote the pull requests by the clients.

19

Figure 4.1

4.1.2 Threat Model and Assumptions

In an ideal setup with proper bootstrapping, the threat model of Fledger Loopix module largely

aligns with that of Loopix, with a few key differences. Since proxy nodes access web pages, and we

assume an adversary with visibility over the entire network, when a web page is accessed by a proxy

node, the adversary can infer that the corresponding node has received a web proxy request. This

contrasts with the threat model outlined in subsection 3.2.3, where, due to the absence of observable

traffic outside the network, an adversary cannot distinguish whether a client receiving real or cover

traffic.

A related issue arises because the web pages accessed by proxy nodes are observable. For

instance, an adversary could notice that every time a particular node comes online, a specific web

page is accessed. This pattern could allow the adversary to correlate the web page access with a

specific client. To mitigate this risk, we assume a sufficiently large number of online users and

sufficient web traffic to provide an anonymity set for the clients.

Although this assumption implies that the Fledger Loopix module for web proxy requests offers

weaker privacy compared to applications like messaging, hiding web page access from an observer

is beyond the scope of this project.

20

4.2 Adaptations for more reliable message delivery

Fledger operates as a peer-to-peer network, where churn is unavoidable. Since in the mix network,

each hop along a message’s route is encrypted with the public key of a specific node, if any node on

the route goes offline or fails, the message will not reach its destination. To address this issue, we

have integrated two simple mechanisms to improve the success rate of web proxy requests through

the Fledger Loopix module. For further enhancements to reliability, we refer the reader to chapter 7.

4.2.1 Retry Mechanism

As the name suggests, this mechanism retries a web proxy request if it times out. Each retry uses

a route that is chosen randomly and independently of the previous route. This functionality was

implemented directly in the web proxy’s get request because it requires maintaining the state of the

request, whereas the current Loopix implementation does not support state management. With this

mechanism, we expect an increase in end-to-end latency, as more retries are expected to result in a

higher success rate of requests.

4.2.2 Duplicate Messages

In this mechanism, when the web proxy sends a request and the Loopix module receives it from

the overlay module, the Loopix module creates multiple encrypted copies of the request, each with

separate routes and delays. This approach increases the likelihood of successful delivery, as some

routes may still succeed even if others fail due to churn. While this might appear to increase the

system’s bandwidth usage, it does not. Duplicate messages are placed in the client queue like any

other message, and since the system sends a message regardless of whether the queue is empty, the

overall bandwidth usage remains unchanged. However, in scenarios with very high real traffic rates,

the queue could become congested more easily due to these duplicate requests.

Since the client node sends multiple copies of the same request, the proxy node may receive

duplicate requests. To prevent responding multiple times to the same request, the proxy node keeps

track of requests it has already processed. Web proxy requests already include unique IDs, so the

proxy node simply records the IDs of requests it has replied to. When the proxy node generates

a response messages and sends them to the Loopix module, they each of these responses are

duplicated.

Unlike the proxy node, the client node does not know how many responses it will receive for

a single proxy request. Therefore, it must process all duplicate replies. This may increase the

computational load on the client in scenarios with low churn or high request success rates.

21

Chapter 5

Implementation

This chapter delves into implementation details relevant to understanding the design and evaluation

of the Fledger Loopix module.

5.1 Communication between Modules

Fledger uses messages broadcasted via message brokers to facilitate communication between

modules. Each module has its own set of messages, and brokers ensure these messages are directed

to the appropriate modules. While we do not explore the low-level details, understanding how a

message travels between modules can provide helpful context for the design of the Fledger Loopix

module.

When the web proxy module sends a message to the overlay, it creates a data structure with

two fields: a serialized version of its own message (e.g., the get request) and the Module Name,

"web proxy." This structure is referred to as a NetworkWrapper. The web proxy module sends this

NetworkWrapper to the overlay, which modifies the message type to a Loopix message while keeping

the rest of the data structure intact.

When Loopix module receives this message from the overlay, it creates an encryption of the

message as described in section 3.2. It then creates its own NetworkWrapper, including its module

name, and sends this wrapper to the network module. Figure 5.1 provides a visualization of this

process up to this point.

22

Figure 5.1

Upon receiving a message from the network, the network module broadcasts the message

containing the NetworkWrapper. The Loopix module determines whether to process the message

based on the Module Name field in the NetworkWrapper.

When the Loopix module receives a message from the network where it is the final destination,

it decrypts the message to recover the plaintext Overlay message. This message is then forwarded to

the overlay, which examines the encapsulated NetworkWrapper and sends the data structure to the

module corresponding to the Module Name field, which, in this case, is the web proxy module.

5.2 Sphinx Packets

This implementation uses the Rust Sphinx packet implementation found by NymTech [24] for mix

network packet encryption. There are two reasons why this is noteworthy.

First, this library uses a key format that differs from the one employed in Fledger for WebRTC,

as described in section 3.1. To use the Sphinx packet format, the Fledger Loopix module must

conform to the key format required by the Sphinx implementation. Consequently, each Fledger

node participating in the mix network maintains a separate set of keys specifically for this purpose.

However, Fledger currently lacks a mechanism for nodes to discover the Loopix public keys of

other nodes, which are essential for encrypting packets in the mix network. As node discovery is

beyond the scope of this project, the simulations described in chapter 6 rely on bootstrapping to

allow nodes to learn the topology of the mix network (see section 5.3 for details).

23

Second, the implementation requires a small modification to the Sphinx library. The version used

here is not the one available on crates.io [5] a constant (MAX_PATH_LENGTH) in src/constants.rs
had to be changed to ensure compatibility with the Fledger Loopix module. This is the only change

that was made to the package.

5.3 Bootstrapping

This section outlines the limitations of the Fledger Loopix module implementation created for this

project. To make the implementation viable for simulation purposes, certain aspects were included

that would not be suitable for a real-world deployment. These include:

5.3.1 Signaling Server

As discussed in section 3.1, Fledger currently relies on a centralized signaling server to enable

nodes to discover one another. While this approach works for simulation purposes, it introduces a

single point of trust that would need to be replaced with a decentralized mechanism in real-world

deployments (see chapter 7 for details).

The reliance on a signaling server poses a significant risk: a malicious signaling server could

direct nodes to adversary-controlled mix nodes. If an adversary gains control of all mix nodes in a

route, they could de-anonymize the sender and receiver, undermining the core functionality of the

mix network. We assume that the signaling server behaves honestly.

5.3.2 Public key discovery

As mentioned in section 5.2, there is currently no mechanism for nodes to discover public keys

required for encrypting Sphinx packets. For testing purposes, we implemented a "root" node creates

a topology for the mix network using a pre-determined algorithm and assigns Loopix private and

public keys to each node. This information is then propagated through the Gossip module using

gossip events. While effective for testing, this approach is not suitable for a real-world deployment.

A practical implementation would require a mechanism for node discovery (see chapter 7).

5.3.3 Node address in Loopix messages

The current implementation does not address the issue of the proxy node knowing the ID of the

originator of the web proxy request, as Loopix messages include the originator’s ID. This design

choice was made to simplify the implementation of replies to web proxy requests.

24

In principle, it is possible to reply to a Sphinx packet using Single-Use Reply Blocks, a feature

provided by the Sphinx protocol. However, since Loopix acts as an intermediary between different

modules in our implementation, utilizing this mechanism would require the Fledger module to track

messages it sends to other modules. The Fledger module would then need to leverage Single-Use

Reply Blocks when generating replies. The approach for enabling this functionality is outlined in

chapter 7.

5.3.4 Unique Message Identifier

For debugging purposes, each message is assigned an unencrypted unique ID. While this approach

is highly insecure and unsuitable for a real deployment, it has been retained to facilitate the devel-

opment and debugging of future work. This unique ID is currently the only means to trace the path

of a message through the network during debugging. For more details on how these IDs could be

utilized to implement a stateful Fledger Loopix module, see chapter 7.

5.4 Performance Improvements

5.4.1 Worker Pool

During the initial implementation, we identified a performance bottleneck caused by the sequential

processing of messages. To address this, we introduced a worker pool to enable parallel message

processing. In the current implementation, the worker pool is configured to utilize maximum 8

threads. This value can be optimized based on the specific hardware of each machine running

Fledger, taking into account the core count and the computational resources the user is willing to

allocate to the network.

5.4.2 Loopix Message Storage

In the debugging phase, all incoming and outgoing messages were initially stored in a thread-safe

data structure, accessed using a read-write mutex. However, due to the high volume of messages

sent and received every second, the frequent locking and unlocking of the data structure significantly

slowed down message processing. To resolve this issue, we discontinued the storage of all sent and

received messages. Currently, only providers store messages awaiting to be sent to their clients.

25

Chapter 6

Evaluation

This chapter evaluates the Fledger Loopix module, beginning with an analysis in the absence of

churn. It examines how the parameters defined in subsection 3.2.2 were selected specifically for the

web proxy application. Subsequently, it investigates the performance of web proxy requests under

churn, with and without the use of the reliable message delivery mechanisms.

6.1 Experimental Setup

All simulations were conducted using the Sphere Research Infrastructure [21]. Each simulation

involved 3 clients, 6 mix nodes configured with a path length of 3 (i.e., 2 mix nodes in each layer of

the stratified topology), 3 providers, and one signaling server (Figure 6.1).

26

Figure 6.1

The network was emulated with a 50 Mbps link between each node (in a fully connected network)

and a network latency of 15 ms. While an ideal setup would involve each node connecting to a single

router via individual links, the following sections will demonstrate that network link speed does not

present a bottleneck in this context. Additionally, we aim to convince the reader that the Fledger

Loopix implementation is scalable to accommodate a significantly larger number of clients.

Each Fledger node in the simulation runs Ubuntu 20.04 LTS with 4 GB RAM and 4 cores on

Sphere Testbed Virtual Machines [20]. The signaling server node, exceptionally, has 32 GB of RAM

and 32 cores to ensure it does not become a bottleneck.

When the simulation begins, client nodes send web proxy requests for the URL:https://ipinfo.io/.

Each client sends one request at a time, waiting for either a successful response or a timeout before

sending the next request. All client nodes perform this process concurrently, with each acting as

proxy nodes at the same time.

6.2 Fine tuning Loopix Parameters for Web Proxy Requests

Having implemented the Fledger Loopix module, it is important to ensure that web proxy requests

are fast and do not use a lot of bandwidth even in the presence of cover traffic. This section focuses

on fine-tuning our implementation with the Loopix parameters described in subsection 3.2.2 to suit

the use case of web browsing via a web proxy.

For each experiment, measurements were collected over a 5-minute simulation period. The

27

nodes were given 15 seconds to initialize before the Fledger Loopix module was started. In these

simulations, the web proxy timeout, as mentioned in subsection 3.1.2, was set to 20 seconds. This

configuration ensures that each request has sufficient time to complete, and any unsuccessful proxy

request indicates dropped packets or similar issues.

6.2.1 Latency Components

Figure 6.2

Before getting into fine tuning the end-to-

end latency, it is important to talk about

what contributes to the time a proxy re-

quest takes. We conducted 12 simulations

with identical parameters to show vari-

ous components of the end-to-end latency.

While the average end-to-end latencies are

quite stable, it can be noted that there is

some variation between simulations.

In Figure 6.2, the stacked bar repre-

sents the average end-to-end latency for

the 12 simulations. The dotted red line

denotes the actual average end-to-end la-

tency, which is slightly higher than the

combined values of all listed components.

This discrepancy arises from additional fac-

tors, such as the time taken by the proxy

node to retrieve the requested website, the

preparation of WebRTC messages, and the

time required for nodes to set up connec-

tions. These elements lie in the gap be-

tween the stacked bars and the dotted red

line.

Figure 6.2 highlights four major com-

ponents that significantly contribute to the

end-to-end latency, as detailed in the fol-

lowing analysis.

28

• Client Delay

This is the time a message spends waiting in the client’s payload message queue after being

created. The Loopix parameter that influences this delay is λP , which represents the rate (in

messages per second) at which the client sends messages from its queue.

• Mix node Delay

This refers to the total time a message spends being "mixed," which is the cumulative delay

at each layer of the mix network. It approximately corresponds to the formula: (number of

layers in the mix network+1) (to account for the provider of the initiating client) multiplied

by the the mean delay. While the graphs display the mean delay observed in the simulations,

these delays are drawn from a distribution with a mean µ. As a result, the average delay at a

mix node closely the parameter µ.

• Provider Delay

This is the amount of time a message spends in the storage of the end provider before being

sent to the client as part of a pull request response. It is primarily influenced by the tpul l

parameter and, to a lesser extent, by NR parameter.

• Network Delay

The amount of time a packet spends traveling between nodes. In our emulated network, the

network delay is set to 15 ms per hop. For a one-way trip, this corresponds to (l −1+4)∗15ms,

accounting for the following hops: from the sender to the provider, from the provider to

the mix network, through the mix network, to the destination provider, and finally to the

destination.

Figure 6.2 shows the averages of these values over the course of the simulation in both directions.

The legend of the graph also includes the decryption delay and encryption delay, representing the

total time spent decrypting Sphinx packets and encrypting payload messages, respectively. However,

as these components contribute only minimally to the overall end-to-end latency, they are not

prominently visible on the stacked bars.

To highlight one limitation of these measurements, for mix node and decryption delays, the

reported values are averages across all messages, including both payload and cover traffic. This is

because mix nodes cannot distinguish between payload messages and cover messages.

6.2.2 Mean number of messages in the mix

An important security parameter, described in subsection 3.2.2, is the mean number of messages

in a mix node at a given time. Although the Loopix paper recommends λ
µ = 2 to be at least 2, their

experiments are based on providers running on AWS m4.16xlarge instances with 256 GB RAM

and mix nodes running on m4.4xlarge with 64 GB RAM. As Fledger is designed as a lightweight

29

program, where a user that wants to participate in the Fledger Loopix network should not need to

have a high end machine, we first look into whether or not this recommendation is feasible within

our experimental setup.

Since the limiting factor for our nodes with 4 CPU cores would be processing many incoming

messages at the same time, in this section we keep µ stable and change the number of incoming

messages to a mix node per second by adjusting the cover traffic. λL and λD are set to the same

values and adjusted to change the number of incoming messages, while λP and λmu values are not

changed to keep the latency stable.

In the following section µ is to 100 ms, which corresponds to a 1
µ = 1

10 as a mean delay of 100 ms

corresponds to an average of 10 messages leaving the mix node per second. According to the Loopix

paper the target value incoming messages per second is 20, whereλµ = 20
10 = 2.

(a)

(b)

In Figure 6.3a, as the rate of incoming messages gradually increases, the percentage of successful

proxy requests remains stable initially. However, beyond approximately 30 incoming messages

per second, the reliability drops significantly and becomes highly unstable. Similarly, as shown in

Figure 6.3b, the end-to-end latency also becomes increasingly unstable at this point. We believe the

significant gap between the end-to-end latency and the latency components stems from the worker

pool mentioned in chapter 5. Messages likely wait until workers become available from the worker

30

pool, and this waiting time is not captured in our metrics.

It is noteworthy in Figure 6.3b that adjusting the incoming message rate does not affect the

percentage of successful proxy requests or the end-to-end latency, provided that the computational

power of the nodes is not exceeded.

6.2.3 Payload Message Rate and Mean Delay

In the use case of Fledger Loopix with a web proxy, the most critical limitation is the end-to-end

latency, as users should be able to browse the internet without experiencing significant delays. This

section aims to identify values for µ and λP that minimize end-to-end latency while maintaining

reasonable bandwidth usage.

Payload Message Rate

One of the four major components of end-to-end latency is client delay. To reduce this delay, λP

must be increased. However, to keep the λ
µ ratio stable, an increase in the payload message rate

requires a corresponding decrease in the rates of cover traffic (λL andλD). The following simulations

adjust payload message and cover traffic rates keeping all other parameters the same.

In Figure 6.4a, it is possible to see that as payload rate increases, the client delay decreases,

which in turn causes the end-to-end latency to decrease, however after a payload rate of 6 messages

per second the returns are diminishing. We believe this stems from the fact that creation of these

packets puts a load on the client and the provider. This is supported by Figure 6.4b where as the

payload increases the success rate of a web proxy request decreases possibly due to dropped or

delayed packets.

In Figure 6.4c, we see that increasing the payload rate increases the bandwidth marginally, this

is because the incoming message rate also increases Figure 6.4d, which indicates that lower cover

traffics should have been used in these scenarios.

31

(a)

(b)

(c)

(d)

Figure 6.4: Data visualization for different payload message rates

32

Mean Delay

Another significant component of end-to-end latency is the mix node delay, which is directly related

to the mean delay µ. This section examines how changes in the µ value affect both latency and

bandwidth. When µ decreases, the rate of messages leaving the mix node increases. To maintain a

stable λ
µ ratio, the rate of incoming messages must also increase. However, to isolate the effect of

mean delay on latency and bandwidth, the following simulations adjust only the cover traffic rates.

The payload message rate and all other parameters remain consistent across all runs.

(a)

(b)

(c)

33

In Figure 6.5a, as expected, while mean delay is increased, the mix node delay increases as well,

lowering the end-to-end latency through lowering the mix node delay. Figure 6.5b visualizes that

incoming messages per second per mix node has been adjusted accordingly. For example, for a µ of

50 milliseconds, which corresponds to a 1
µ of 1

20 , the incoming messages has been adjusted through

the cover traffic to keep a stable λ
µ = 2.

Surprisingly, Figure 6.5c shows the highest with low mean delays, we believe this is due to the

worker pool mentioned in section 5.4. The workers are free faster with a low mean delay, which

causes less issues with delivery.

However, it might be beneficial to take correlation of mean delay with reliability with a grain

of salt, since the results in subsection 6.2.2 show that after 30 incoming messages per second the

results become unstable,

6.2.4 Number of messages retrieved and time-to-pull

The final major component of the end-to-end latency influenced by Loopix parameters is the

provider delay. This delay is determined by two parameters tpul l and NR , also described in subsec-

tion 3.2.2. This section conducts a grid search over various combinations of these parameters to

analyze their impact on both end-to-end latency and bandwidth usage.

Figure 6.6a one that shows how number of of messages retrieved (NR) and time-to-pull (tpul l)

affect total bandwidth and Figure 6.6b shows how these two variables affect end-to-end latency.

(a) (b)

In Figure 6.6b, NR value over 9 and below 3 increases the latency. We believe that less 3 messages

retrieved per pull request is not sufficient to send the response from the proxy node, and over 9,

there is an added overhead for the provider and client to process all the dummy messages which

34

increases latency, we refer the reader to chapter 7 for potential ways to address this issue.

Figure 6.6a shows that total network usage is strongly correlated to the parameter tpul l

6.3 Reliability Mechanisms

Having fine-tuned the Loopix parameters for the web proxy application, it is necessary to evaluate

the feasibility of this system in the presence of mix node failures. This section examines the effects

of the retry and duplicate message mechanisms described insection 4.2 on the success rate of web

proxy requests and average end-to-end latency.

Measurements are conducted similarly to the methodology outlined in the previous section.

Each measurement consists of a 5-minute simulation. For each reliability mechanism configuration,

the simulation is run under four conditions:

• All nodes are operational.

• One mix node in the first layer is stopped.

• One mix node in the first layer and one mix node in the second layer are stopped.

• One mix node in each layer is stopped.

The clients nodes are not aware of the node failures along the mix network.

While the final configuration results in 50% of all mix nodes being unavailable, it highlights

a limitation in our experimental setup. A more ideal setup would involve a larger number of mix

nodes in the network, allowing for finer control over node failures and a more granular analysis.

In these simulations, the web proxy request timeout is set to 6 seconds—approximately 2-3

times the average latency for this configuration. . The timeout is set to this value to be able to study

the effectiveness of the mechanisms in this section.

6.3.1 Retrying

In this subsection, we evaluate the impact of different retry configurations on the success rate

and end-to-end latency of web proxy requests. The figures below illustrate the results for various

configurations in different colors, including no retries, one retry, and so on.

Figure 6.7a demonstrates that the success rate of web proxy requests drops significantly, even

with the failure of a single mix node in the network. It is important to note that the figure uses a

35

logarithmic scale: the success rate declines from nearly 100% to less than 10% when one mix node

fails. For configurations with two or three mix node failures, almost all web proxy requests fail unless

two or three retries are allowed, respectively. This trend suggests that a higher number of retries

increases the likelihood of finding a "correct" path through operational nodes.

Figure 6.7b shows a slight increase in end-to-end latency for configurations with two, three, or

four retries when one mix node fails. This increase is expected, as retrying inherently adds to the

latency of successful requests. Instead of immediately failing, requests take longer to succeed due to

retries.

It is worth noting that there appear to be anomalies in the simulation results for the two-retry

configuration. Both figures display unexpected values that deviate from the observed trends, sug-

gesting a possible issue with the simulation.

(a)

(b)

6.3.2 Duplicate Messages

In this section, we evaluate the impact of duplicate messages on the reliability and latency of web

proxy requests, similar to the analysis in the retry section.

Figure 6.8a demonstrates that duplicate messages significantly improve the reliability of web

36

proxy requests, outperforming the retry mechanism. Even in scenarios where 50% of the nodes fail,

duplicating messages and sending them through different routes achieves a success rate comparable

to the retry mechanism under a single mix node failure, with approximately 10% of web proxy

requests succeeding. For configurations with one node failure, duplicate messages enable reliability

levels close to those observed when all nodes are operational. Increasing the number of duplicates

further enhances message delivery reliability.

Figure 6.8b shows that the improved reliability comes at the cost of higher latency. This increase

is likely due to the Loopix module needing to process all payload messages, whereas cover traffic

can be more easily discarded.

(a)

(b)

6.4 Overview

While this regulation has primarily been used to adjust the mean number of messages at a mix node,

it also provides the flexibility to adapt cover traffic dynamically as nodes join or leave the network.

This adaptability allows Loopix to accommodate significantly more nodes than what was feasible

for experimentation in this project. Since the parameters of the Loopix system are consistent across

all nodes, it is possible to reduce cover traffic as new nodes enter the network, ensuring that the

37

threshold identified in subsection 6.2.2 is not exceeded. Furthermore, this ability to adjust cover

traffic dynamically is particularly valuable in handling churn, as explored later in our evaluation.

While the results presented in section 6.3 may seem underwhelming, it is important to note

that the mechanisms evaluated are relatively simple. Moreover, neither of these schemes increases

bandwidth usage, as all messages are sent at the rates configured in Loopix, as outlined in section 6.2.

A somewhat surprising finding from the evaluation of these reliability mechanisms is that duplicate

messages are a simple yet effective way to improve reliability in the Fledger Loopix module. Further

research is needed, including more fine-grained simulations of failures, particularly scenarios where

nodes come back online at varying rates.

38

Chapter 7

Future Work

7.1 Bootstrapping and Node Discovery

Mentioned in section 5.3, a signaling server currently serves as a temporary bootstrapping mech-

anism for node discovery in Fledger. In an ideal setup, bootstrapping would involve leveraging

blockchain-based smart contracts. Nodes would register their address information, including public

keys and other metadata, in a smart contract. For nodes participating in Fledger Loopix, additional

cryptographic keys specific to this module (section 5.2) could be stored alongside the regular key

pairs. This approach offers a decentralized alternative to bootstrapping, as blockchain-based node

discovery distributes responsibility across the network.

7.2 Stateful Fledger Loopix Module

The reliability mechanisms described in the design section are currently implemented primarily

within the web proxy module, as it already maintains the state of web proxy requests. However, to

avoid re-implementing these mechanisms across different modules, it would be beneficial to move

this functionality to the Loopix module. Here is how the stateful implementation could work:

The unique ID mentioned in section 5.3 would be encrypted along with the web proxy request.

When the Fledger Loopix module receives the message, it would extract this unique ID and store

it for a predetermined duration. The duration could be specified in the message metadata. The

Loopix module would then relay the unique ID along with the web proxy request to the appropriate

module handling the message.

If the web proxy module sends a response to this request, it would reuse the same unique ID.

The Loopix module could then use the ID to retrieve the single-use reply block from the original

39

Sphinx packet and send the response back to the originator of the request. This approach eliminates

the need to include the originator node’s ID in the Loopix message, addressing privacy concerns

mentioned in section 5.3.

7.3 Erasure Codes

Erasure codes represent another potential approach to improve reliability. By encoding messages

into multiple fragments and allowing the reconstruction of the original message from a subset, this

method ensures delivery even if some fragments are lost during transit. While to our knowledge

erasure codes are not mentioned in current mix networks designs, their potential integration could

improve reliable message delivery in environments with high churn.

Integrating erasure codes into the Fledger Loopix module would require the module to be

stateful. Below, we describe a potential method for incorporating erasure codes into the module:

When the web proxy sends a single request, the Loopix module could generate additional drop

messages (which would have been sent in the case of an empty queue). Using these drop messages

along with the real message, the module would create erasure-coded packets. Each packet including

an ID and encrypted metadata specifying the total number of packets required to reconstruct the

original message. These packets would then be added to the client queue as normal and transmitted.

At the final destination, the Loopix module would match the packets using their IDs and metadata,

enabling it to reconstruct the original message.

Since web proxy responses involve multiple messages, the Loopix module could directly con-

struct erasure-coded packets from these messages instead of needing to drop messages. These

packets would be encrypted and transmitted through the network. The originating node would then

recover the original responses in the same manner as described for requests.

To implement erasure coding, an efficient algorithm such as Raptor Codes [23] would need to

be employed. This algorithm must be applied before encrypting the message, since transmitting

directly relatable messages through the network could increase the risk of an adversary correlating

the sender and receiver.

7.4 Mix regions

As discussed in section 2.2, systems such as Cashmere [26] and CAT [17] use mix groups to enhance

reliability in mix networks. Instead of encrypting packets with the keys of individual nodes—which

can become single points of failure—these systems use shared keys and commutative keys, respec-

tively, to distribute forwarding responsibility.

40

In the use case of a mix network for web proxy requests, there are many points of failure since

successful web proxy requests require at least three messages to traverse the network, creating

further points of potential failure. Integrating the concept of mix groups into the Fledger Loopix

module could improve the rate of successful web proxy requests. The following description, heavily

influenced by Cashmere, outlines a potential way to integrate mix regions into Loopix:

Each mix layer would act a mix group, where they would have shared keys. Web proxy requests

would be broadcasted to a random fraction of the nodes at each mix layer. When a node in the mix

layer receives one of these messages it forwards it to the next layer in a similar manner while telling

the other nodes in the mix group that the message has been forwarded. If a node in the mix group,

learns that another node has forwarded the request, it does nothing.

This approach may result in multiple nodes forwarding the message simultaneously. However,

because the selection of nodes at each hop is random and independent, this redundancy would

increase the likelihood that the message successfully reaches an active node in the mix network.

We leave the implementation, as well as the evaluation of reliability, additional latency, and

bandwidth implications, to future work. Additionally, the threat model of Fledger Loopix module

would need to be reassessed, as having multiple nodes aware of the input and output of a message

increases the attack surface, which could make it easier for colluding nodes to trace the path of a

message. A potential mitigation strategy might involve reducing the size of mix regions. However,

we also defer the evaluation of the privacy implications of such a scheme to future research.

7.5 Discussion of Providers

7.5.1 Better Processing Mechanism

When the provider receives a pull request, the worker pool mentioned in section 5.4 is utilized. As

observed in subsection 6.2.4, providers can become overwhelmed when handling a high volume of

messages. This issue could be mitigated by introducing a separate worker pool dedicated specifically

to processing pull requests.

Additionally, dummy message for pull requests are currently created sequentially. This task

could easily be parallelized, as the required number of workers and the interval at which they are

needed are well-defined.

7.5.2 Removal of Providers

As discussed in subsection 4.1.2, providers in the Fledger Loopix design do not fully serve their

intended purpose of ensuring an observer connect infer whether or not a node is receiving real or

41

cover traffic. If the Loopix integration into Fledger is intended solely for the web proxy module, it

might be advantageous to replace providers with simpler entry nodes that forward traffic directly

to the client without storing messages. Since the client already needs to be aware of the network

topology, the role of providers as entry nodes are not necessary.

Mix nodes in the first and final layers of the mix network could be used as entry nodes, signifi-

cantly reducing end-to-end latency without further compromising privacy properties. However, if

the Fledger Loopix module is extended for other purposes, such as private messaging, providers

may still offer improved privacy. We leave the exploration and evaluation of this potential extension

to future work.

42

Chapter 8

Conclusion

In this project, we investigated various anonymous communication systems to assess their applica-

bility to web browsing. We integrated one of these systems into Fledger and tuned its parameters for

this specific use case, achieving a latency of 2–3 seconds. Subsequently, we revisited the literature

to explore reliability mechanisms for mix networks. While many promising approaches exist for

improving reliable message delivery, we evaluated two simple mechanisms: retrying and duplicate

messages.

The retrying mechanism proved to be relatively ineffective at improving request reliability. In

contrast, duplicate messages—sending the same message through independent routes—emerged

as a highly viable mechanism in this context. This approach achieved a success rate close to that

of web proxy messages without any mix node failures (≈ 90%), even in scenarios where 17% of

mix nodes failed. For comparison, the success rate without any reliability mechanisms dropped to

approximately 10% under similar conditions.

While duplicate messages show significant promise, further investigation into additional relia-

bility mechanisms is essential to make the Fledger Loopix module implemented in this project a

practical solution for web browsing. Mechanisms discussed in the previous section can be integrated

into the module, but additional work is needed to simulate churn in peer-to-peer networks more

effectively, enabling a more thorough evaluation of the different reliability mechanisms.

43

Bibliography

[1] Ludovic Barman, Italo Dacosta, Mahdi Zamani, Ennan Zhai, Bryan Ford, Jean-Pierre Hubaux,

and Joan Feigenbaum. “PriFi: A Low-Latency Local-Area Anonymous Communication Net-

work”. In: CoRR abs/1710.10237 (2017). arXiv: 1710.10237. U R L: http://arxiv.org/abs/
1710.10237.

[2] Ludovic Barman, Moshe Kol, David Lazar, Yossi Gilad, and Nickolai Zeldovich. “Groove:

Flexible Metadata-Private Messaging”. In: 16th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 22). Carlsbad, CA: USENIX Association, July 2022, pp. 735–

750. I S B N: 978-1-939133-28-1. U R L: https://www.usenix.org/conference/osdi22/
presentation/barman.

[3] Lamiaa Basyoni, Noora Fetais, Aiman Erbad, Amr Mohamed, and Mohsen Guizani. “Traffic

Analysis Attacks on Tor: A Survey”. In: 2020 IEEE International Conference on Informatics,

IoT, and Enabling Technologies (ICIoT). 2020, pp. 183–188. D O I: 10.1109/ICIoT48696.2020.
9089497.

[4] David L. Chaum. “Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms”.

In: Communications of the ACM. Vol. 24. 2. ACM, Feb. 1981, pp. 84–90. U R L: https:
//www.freehaven.net/anonbib/cache/chaum-mix.pdf.

[5] Crates.io. sphinx-packet: Implementation of the Sphinx Packet Format. https://crates.
io/crates/sphinx-packet. Accessed: 2025-01-10.

[6] George Danezis and Ian Goldberg. “Sphinx: A Compact and Provably Secure Mix Format”. In:

2009 30th IEEE Symposium on Security and Privacy. 2009, pp. 269–282. D O I: 10.1109/SP.
2009.15.

[7] Google DeepMind. Anonymous messaging using mix networks. https://github.com/
google-deepmind/loopix-messaging. Accessed: 2025-01-10.

[8] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. The Nym Network: The Next Generation

of Privacy Infrastructure. Whitepaper 1.0. Nym Technologies SA, Feb. 2021. U R L: https:
//nym.com/nym-whitepaper.pdf.

44

https://arxiv.org/abs/1710.10237
http://arxiv.org/abs/1710.10237
http://arxiv.org/abs/1710.10237
https://www.usenix.org/conference/osdi22/presentation/barman
https://www.usenix.org/conference/osdi22/presentation/barman
https://doi.org/10.1109/ICIoT48696.2020.9089497
https://doi.org/10.1109/ICIoT48696.2020.9089497
https://www.freehaven.net/anonbib/cache/chaum-mix.pdf
https://www.freehaven.net/anonbib/cache/chaum-mix.pdf
https://crates.io/crates/sphinx-packet
https://crates.io/crates/sphinx-packet
https://doi.org/10.1109/SP.2009.15
https://doi.org/10.1109/SP.2009.15
https://github.com/google-deepmind/loopix-messaging
https://github.com/google-deepmind/loopix-messaging
https://nym.com/nym-whitepaper.pdf
https://nym.com/nym-whitepaper.pdf

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: The Second-Generation Onion

Router”. In: 13th USENIX Security Symposium (USENIX Security 04). San Diego, CA: USENIX

Association, Aug. 2004. U R L: https://www.usenix.org/conference/13th-usenix-
security-symposium/tor-second-generation-onion-router.

[10] Roger Dingledine, Vitaly Shmatikov, and Paul Syverson. “Synchronous Batching: From Cas-

cades to Free Routes”. In: Privacy Enhancing Technologies. Ed. by David Martin and Andrei

Serjantov. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 186–206. I S B N: 978-3-540-

31960-3.

[11] UCL InfoSec Group. Loopix: Low-Latency Anonymous Communication System. https:
//github.com/UCL-InfoSec/loopix. Accessed: 2025-01-10.

[12] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. “Vuvuzela: scalable

private messaging resistant to traffic analysis”. In: Proceedings of the 25th Symposium on

Operating Systems Principles. SOSP ’15. Monterey, California: Association for Computing

Machinery, 2015, pp. 137–152. I S B N: 9781450338349. D O I: 10.1145/2815400.2815417.

U R L: https://doi.org/10.1145/2815400.2815417.

[13] Ineiti. Fledger - the fast, fun, easy ledger. https://github.com/ineiti/fledger. Accessed:

2025-01-10.

[14] Dogan Kesdogan, Jan Egner, and Roland Büschkes. “Stop- and- Go-MIXes Providing Prob-

abilistic Anonymity in an Open System”. In: Information Hiding. Ed. by David Aucsmith.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 83–98. I S B N: 978-3-540-49380-8.

[15] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. “Atom: Horizontally

Scaling Strong Anonymity”. In: Proceedings of the 26th Symposium on Operating Systems

Principles. SOSP ’17. Shanghai, China: Association for Computing Machinery, 2017, pp. 406–

422. I S B N: 9781450350853. D O I: 10.1145/3132747.3132755. U R L: https://doi.org/10.
1145/3132747.3132755.

[16] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Alexander Ford. Riffle: An Efficient

Communication System With Strong Anonymity. July 2016. D O I: 10.1515/popets-2016-
0008. U R L: https://infoscience.epfl.ch/handle/20.500.14299/196580.

[17] Fengjun Li, Bo Luo, Peng Liu, and Chao-Hsien Chu. “A Node-failure-resilient Anonymous

Communication Protocol through Commutative Path Hopping”. In: 2010 Proceedings IEEE

INFOCOM. 2010, pp. 1–9. D O I: 10.1109/INFCOM.2010.5462114.

[18] Medium. https://wiprotechblogs.medium.com/choice-of-signaling-server-in-
web-real-time-communication-e771c1ccf60d. Accessed: 2025-01-3.

[19] Ania Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George Danezis. The Loopix

Anonymity System. 2017. arXiv: 1703.00536 [cs.CR]. U R L: https://arxiv.org/abs/
1703.00536.

[20] SPHERE Project. SPHERE Experimentation Documentation. https://mergetb.gitlab.io/
testbeds/sphere/sphere-docs/docs/experimentation/. Accessed: 2025-01-10.

45

https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://github.com/UCL-InfoSec/loopix
https://github.com/UCL-InfoSec/loopix
https://doi.org/10.1145/2815400.2815417
https://doi.org/10.1145/2815400.2815417
https://github.com/ineiti/fledger
https://doi.org/10.1145/3132747.3132755
https://doi.org/10.1145/3132747.3132755
https://doi.org/10.1145/3132747.3132755
https://doi.org/10.1515/popets-2016-0008
https://doi.org/10.1515/popets-2016-0008
https://infoscience.epfl.ch/handle/20.500.14299/196580
https://doi.org/10.1109/INFCOM.2010.5462114
https://wiprotechblogs.medium.com/choice-of-signaling-server-in-web-real-time-communication-e771c1ccf60d
https://wiprotechblogs.medium.com/choice-of-signaling-server-in-web-real-time-communication-e771c1ccf60d
https://arxiv.org/abs/1703.00536
https://arxiv.org/abs/1703.00536
https://arxiv.org/abs/1703.00536
https://mergetb.gitlab.io/testbeds/sphere/sphere-docs/docs/experimentation/
https://mergetb.gitlab.io/testbeds/sphere/sphere-docs/docs/experimentation/

[21] SPHERE Project. SPHERE: Security and Privacy Heterogeneous Environment for Reproducible

Experimentation. https://sphere-project.net/. Accessed: 2025-01-10.

[22] Andrei Serjantov, Roger Dingledine, and Paul Syverson. “From a Trickle to a Flood: Active

Attacks on Several Mix Types”. In: Information Hiding. Ed. by Fabien A. P. Petitcolas. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2003, pp. 36–52. I S B N: 978-3-540-36415-3.

[23] Amin Shokrollahi. “Raptor codes”. In: IEEE/ACM Trans. Netw. 14.SI (June 2006), pp. 2551–2567.

I S S N: 1063-6692. D O I: 10.1109/TIT.2006.874390. U R L: https://doi.org/10.1109/
TIT.2006.874390.

[24] Nym Technologies. sphinx-packet: Implementation of the Sphinx Packet Format. https:
//github.com/nymtech/sphinx. Accessed: 2025-01-10.

[25] Yusheng Xia, Rongmao Chen, Jinshu Su, Chen Pan, and Han Su. “Hybrid Routing: Towards

Resilient Routing in Anonymous Communication Networks”. In: ICC 2020 - 2020 IEEE In-

ternational Conference on Communications (ICC). 2020, pp. 1–7. D O I: 10.1109/ICC40277.
2020.9149166.

[26] Li Zhuang, Feng Zhou, Ben Y. Zhao, and Antony Rowstron. “Cashmere: resilient anonymous

routing”. In: Proceedings of the 2nd Conference on Symposium on Networked Systems Design &

Implementation - Volume 2. NSDI’05. USA: USENIX Association, 2005, pp. 301–314.

46

https://sphere-project.net/
https://doi.org/10.1109/TIT.2006.874390
https://doi.org/10.1109/TIT.2006.874390
https://doi.org/10.1109/TIT.2006.874390
https://github.com/nymtech/sphinx
https://github.com/nymtech/sphinx
https://doi.org/10.1109/ICC40277.2020.9149166
https://doi.org/10.1109/ICC40277.2020.9149166

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	Low Latency Anonymous Communication Systems
	Approaches to Reliable Message Delivery
	More on mix networks

	Background
	Fledger
	Communication between nodes
	Modules

	The Loopix Anonymity System
	Types of Messages
	Parameters
	Security Goals and Assumptions

	Design
	Loopix Integration into Fledger
	Path of a Message
	Threat Model and Assumptions

	Adaptations for more reliable message delivery
	Retry Mechanism
	Duplicate Messages

	Implementation
	Communication between Modules
	Sphinx Packets
	Bootstrapping
	Signaling Server
	Public key discovery
	Node address in Loopix messages
	Unique Message Identifier

	Performance Improvements
	Worker Pool
	Loopix Message Storage

	Evaluation
	Experimental Setup
	Fine tuning Loopix Parameters for Web Proxy Requests
	Latency Components
	Mean number of messages in the mix
	Payload Message Rate and Mean Delay
	Number of messages retrieved and time-to-pull

	Reliability Mechanisms
	Retrying
	Duplicate Messages

	Overview

	Future Work
	Bootstrapping and Node Discovery
	Stateful Fledger Loopix Module
	Erasure Codes
	Mix regions
	Discussion of Providers
	Better Processing Mechanism
	Removal of Providers

	Conclusion
	Bibliography

